The HAWC Observatory

PENN<u>STATE</u>

Tyce DeYoung
Department of Physics
Penn State University

GeV and TeV Sources in the Milky Way Aspen Summer Workshop June 14, 2010

From Milagro to HAWC

- The High Altitude Water Cherenkov Observatory
- Redeploy Milagro detectors at Volcán Sierra Negra, México
 - Increase altitude from 2650 m to 4100 m
 - Increase area from 3,600 m² (pond) to 20,000 m²
 - Segment the Cherenkov medium: separate tanks instead of a single pond
 - Better angular resolution and background rejection, lower energy threshold
- Achieve 10-15 x sensitivity of Milagro
 - Detect Crab at 5σ in 6 hours instead of 3 months
- Cost: ~\$10M

The HAWC Collaboration

USA

- University of Maryland
- Los Alamos National Laboratory
- University of California, Irvine
- University of California, Santa Cruz
- Colorado State University
- George Mason University
- Georgia Institute of Technology
- Goddard Space Flight Center
- Harvey Mudd College
- Michigan State University
- Michigan Technological University
- University of New Hampshire
- University of New Mexico
- Pennsylvania State University

- University of Utah
- University of Wisconsin, Madison

México

- Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE)
- Universidad Nacional Autónoma de México (UNAM)
- Universidad Autónoma de Chiapas
- Universidad de Guadalajara
- Universidad de Guanajuato
- Universidad Michoacana de San Nicolás de Hidalgo
- Centro de Investigación y Estúdios Avanzados (CINVESTAV)
- Benemérita Universidad de Puebla

Pico de Orizaba, altitude 4100 m, latitude 18° 59' N Two hours drive from Puebla, four from México City Site of Large Millimeter Telescope (infrastructure exists)

HAWC

Site is a saddle point between Sierra Negra & Orizaba National park, existing scientific cosortium Temperatures mild, wind/rain patterns known

Design

300 tanks, 7.3 m diameter by 4.5 m tall 3 x 8" PMTs per tank ~20,000 m² area, >60% active Cherenkov volume

Design

300 tanks, 7.3 m diameter by 4.5 m tall 3 x 8" PMTs per tank ~20,000 m² area, >60% active Cherenkov volume

Design

300 tanks, 7.3 m diameter by 4.5 m tall 3 x 8" PMTs per tank ~20,000 m² area, >60% active Cherenkov volume

HAWC Tanks

- Prefabricated steel cylinders
 - Light-tight, black plastic bladder to hold water
 - attenuate scattered light so that photons not promptly detected are efficiently absorbed
 - Reduces late tails in the PMT photon distribution and reduces noise rate
- 900 8" Hamamatsu
 PMTs re-used from Milagro

Benefits of Higher Altitude

- Number of particles in the shower reaches maximum, then declines exponentially due to atmospheric absorption
- Higher altitude means more particles survive to reach the ground
 - More information about the air shower

 Lower energy threshold, better angular resolution, better energy resolution, better background rejection

Energy Threshold and Effective Area

- Higher altitude leads to a lower energy threshold
 - Stochastics of shower development lead to very soft threshold
- HAWC will be fully efficient above ~2 TeV
 - Still >100 m²
 effective area
 at 100 GeV
- Improvements even more significant after hadron cuts

Energy Resolution

Uncertainty from two sources:

- Measurement of energy deposited at ground level
- Fluctuations in shower development in atmosphere (naturally log-normal)
- Higher elevation means HAWC has a big advantage over Milagro
 - HAWC resolution very close to theoretical limit due to shower stochastics

Angular Resolution

- Significant increase over Milagro limited by information in the particles that reach the ground
 - Based on Milagro algorithms improvements expected (esp. at higher E)

Cosmic ray background rejection based on search for substructure in air showers

Hadron Rejection

Algorithm looks for high-amplitude hits more than 40 m from the reconstructed core location

Gamma-Hadron Separation

- Currently use parameter C = nHit / cxPE
 (cxPE = largest hit (in PEs) >40m from shower core)
- Already gives
 ~10x better
 rejection than
 Milagro at
 fixed energy
- Conservative: more sophisticated algorithms possible

G-H separation at 50% gamma efficiency

Sensitivity to Crab-like Point Sources

- Long integration times lead to excellent sensitivity at highest energies (> few TeV)
- 5σ sensitivity to:
 - 10 Crab in 3 minutes
 - 1 Crab in 5 hr (1 transit)
 - 0.1 Crab in 1/3 year
- 10-15x Milagro sensitivity
 - Lower energy threshold
 - Better angular resolution
 - Better rejection of cosmic rays

50 hr observation time assumed for IACTs, HAWC source transit 15° off zenith

Field of View

Wide field of view, limited by atmospheric depth

 $+180^{\circ}$

50 mCrab survey in 1 yr

Measuring Spectra at the Highest Energies

- HESS J1616-508
 - 0.2 Crab @ 1 TeV, α=-2.3
 - Highest energy ~20 TeV
- Simulated HAWC data for
 1 year with no cutoff
- ...or with a 40 TeV exponential cutoff

Transient Sensitivity

Assumed E⁻² emission spectrum
Full HAWC simulation
Fermi-LAT assumed 0.8 m² effective area, no background

HAWC Construction Schedule

VAMOS

Verification Assessment Measuring Observatory Subsystems (3 months)

• HAWC-30

 Implementation of all subsystems (6 months)

• HAWC-100

 Science operations with 2 times Milagro's sensitivity (12 months)

• Full detector (15 months)

HAWC Construction Schedule

Questions for Discussion

- What else should we be thinking about?
 - Sky survey
 - High energy observations
 - Extended/diffuse emission
 - Transients/variable sources
- We plan to alert the community to transients via GCN are there other types of rapid communications that would be useful?
- Is there a way to exploit better the relative advantages of HAWC (extended/HE emission) and IACTs (angular resolution) to understand complex areas such as the Cygnus region?